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ABSTRACT

In this paper we introduce a comprehensive and rigorous

robust design procedure to overcome some limitations of the

current approaches. A comprehensive approach is general enough

to model the two major types of robust design applications,

namely,

• robust design associated with the minimization of the

deviation of performance caused by the deviation of noise

factors (uncontrollable parameters), AND

• robust design due to the minimization of the deviation of

performance caused by the deviation of control factors

(design variables).

We achieve mathematical rigor by using, as a foundation,

principles from the design of experiments and optimization.

Specifically, we integrate the Response Surface Method (RSM)

with the compromise Decision Support Problem (DSP). Our

approach is especially useful for design problems where there axe

no closed-form solutions and system performance is

computationally expensive to evaluate. The design of a solar

powered irrigation system is used as an example. Our focus in

this paper is on illustrating our approach rather than on the results

per se.

I OUR FRAME OF REFERENCE

The fundamental principle in robust design is to improve the

quality of a product by minimizing the effects of variation

without eliminating these causes. There axe two broad categories,

of robust design based on the source of variation:

Type I Robust Design - minimizing performance deviation

caused by deviation of noise factors (uncontrollable

parameters).

Type II Robust Design - minimizing performance deviation

caused by control factor deviation (design variables).

The Taguchi method was developed for Type I applications

(Phadke, 1989). This is basically a two-part orthogonal array for

experimental design using the signal-to-noise-ratio as an

optimization criterion. Although applications of the Taguchi

method have yielded useful results, this method has also been

criticized by statisticians (Box, 1988, Nair, 1992, Palatino, Tsui,

1992). Tsui, 1992, argues that many of Taguchi's statistical

methods, e.g., orthogonal arrays, linear graphs and accumulation

analysis, are not statistically efficient and proposes to overcome

these limitations using alternative experimental formats, design

criteria, analysis techniques, graphical tools and optimization

strategies. Box, 1988, points out that there axe various math-

ematical difficulties/ requirements associated with the use of

signal-to-noise-ratio. Alternatively, Welch, et al., 1990, propose

combining control and noise factors into a single array thus

modeling the response rather than expected loss, and

approximating a prediction model for loss based on the fitted-

response model, this approach is further developed by

Shoemaker, et al., 1991. The proposed modifications to the

Taguchi method, however, involve a single performance metric.

In our opinion, as there are multiple objectives to be satisfied in

design it follows that there must be multiple aspects to quality.

This opinion is reinforced by some preliminary insight we gained

using quality engineering techniques to reduce the number of the

trajectory simulations of a LifeSat space vehicle (Mistree, et al.,

1993b). Further, we investigated the benefits and limitations of

using the Taguchi method in the early stages of design by

applying it to concurrent concept selection and system synthesis

of a solar powered irrigation system (Chen, et al., 1994). We

assert that quality loss depends on several quality characteristics

and each of these may have different degrees of importance.

Related to this view, Otto and Antonsson, 1991, argue the

necessity of incorporating constraints in robust design.



Onanotherfront,nonlinearprogrammingmethodscanbe
usedforbothTypeIandII applications.RmnakrishnalaaandRan,
1991,formulatetherobustdesignproblemasa nonlinear
optimizationproblemwithTagnchi'slossfunctionasthe
objective.Theyemphasizethenumericalevaluationof total
qualitylossbutfallshortinaddressingthenatureofvariations.
Sundaxesanetal.,1993,incorporateaSensitivityIndex(SI)in
theoptimizationproceduretodeterminea"robustoptimum".The
SIis definedastherootmealasquarevalueof thedifference
betweenthevalueofthefunctionfortheworstcasealadthetarget
value.In thiscase,it is difficultto determinetheweighting
factorsfortargetperformalaceandvariancein theobjective
functionasdesignersmaybeuncertainabouttheralagesforthe
actualperformancealadits variance.Whenusingnonlinear
progrmnmingmethods,Sundaxesmaetal.useconceptsfromthe
designof experimentsto approximatethe variationin
performalaceateachiteration.However,thisiscomputationally
inefficientfor large,analysis-intensivealadcomputationally-
intensiveproblems.
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FIGURE 1. INTEGRATION OF RESPONSE SURFACE

METHODOLOGY WITH THE COMPROMISE DSP

Our focus in this paper is to introduce a comprehensive wad

rigorous robust design procedure to overcome some of these

limitations. By comprehensive, we meala that our approach is

general enough to model the two major types of robust design

applications, nmnely, robust design to minimize the deviation of

noise factors (uncontrollable parameters), AND robust design to

minimize deviation of control factors (design variables). Thus,

our approach is general enough to be used for both Type I alad II

robust design. We achieve mathematical rigor by using principles

from the design of experiments and optimization. Specifically, we

integrate the Response Surface Method (RSM) with the

compromise Decision Support Problem (DSP), Figure 1. The

Response Surface Method (RSM) is a collection of statistical

techniques which support the design of experiments alad fitting a

response model (Khuri alad Cornell, 1987). The compromise DSP

is a multiobjective decision model (Mistree, et al., 1993a) which

enables a designer to determine values of design variables which

satisfy a set of constraints to achieve a set of goals. The objective

is to minimize the deviations of different goals from target values

using lexicographic minimization (Ignizio, 1985).

We build approximating functions using the response surface

model to relate each response to all importalat control- and noise-

factors. Then we solve the problem using the compromise DSP

and these approximations rather thala solving the problem directly

using a computationally expensive alaalysis model. In this way,

the variance of performance cam be predicted instead of running

multiple experiments at each iteration of the solution. The

compromise DSP provides a generic approach to achieve robust

design by enabling a designer to find values of control factors to

achieve a performalace which is as close as possible to the targets

and to minimize variations around the targets, subject to

engineering constraints. Using the compromise DSP, it is

possible to address individually the issues of maximizing the

intensity of the signal on target alad minimizing variation. These

become separate goals in the multiobjective compromise DSP.

This approach helps a designer focus on individual contributions

to mean alad variation and to identify paxmneters which affect the

attainment of specific goals.

In the following, we discuss the two major types of robust

design. We then show the integration of Response Surface

Method and the compromise DSP into a general procedure for

robust design. The design of a solar powered irrigation system is

used as an exmnple. Our focus in this paper is on explaining the

approach rather than on the results per se.

II A DESCRIPTION OF OUR APPROACH

Two Types of Robust Desiqn

The concepts behind the two major types of robust design

application axe illustrated in Figure 2. On the left-halad side of

Figure 2, we use a P-diagram (Phadke, 1987) to represent differ-

ent types of parameters in robust design, their relationships with

the whole system, and thus the differences in source of variation

in response for Type I alad Type II applications. Control factors

(x) are parameters which can be specified freely by a designer;

noise factors (z) are parameters that axe not under a designer's

control; and the signal factor (M) is the intended value for the

response 0I) of a product/process. In Type I applications, the

variance of the response is caused by variations in the noise

factor, z. Type II is different from Type I in that its input does not

include a noise factor. The variation in performance is caused

solely by variations in control factors or design variables in the

region ±Ax.

On the right hand side of Figure 2 we present a schematic of

the different concepts behind the two types robust design.

Taguchi's robust design method is a Type I method and is high-

lighted in the upper right block of Figure 2. In the Tagnchi

method, a designer adjusts control factors, x, to dampen the

variations caused by the noise factor, z. The two curves represent



theperformalacevariationasafunctionofnoisefactorwhenx is

at two different levels, x - a and x - b. If the design objective is

to achieve a performalace as close as possible to the target, M, the

designs at both levels axe acceptable because their mealaS axe the

target M. However, introducing robustness, when x- a, the

performalace varies significantly with the deviation of noise

factor, z, however when x - b, the performance deviates much

less. Therefore, x - b is a better thala x - a as a design solution

which dampens the effect of the noise factors.

Type I
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Y4 Control Factor
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FIGURE 2. A COMPARISON OF TWO TYPES
OF ROBUST DESIGN

The concept behind Type II robust design is represented in

the lower right block of Figure 2. For purposes of illustration,

assume that performance is a function of only one variable, x.

Generally, in this type of robust design, to reduce the variation of

response caused by the deviations of design variables, instead of

seeking the optimum value, a designer is interested in the flat part

of a curve near the performalace target. If the objective is to move

the performalace function towards taxget M and if a robust design

is not sought then obviously the point x - a is chosen. However,

for a robust design, x - b is a better choice. This is because if

design variables wxy within the region ±Ax of their means, the

resulting wxiation of response of the design at x - b is much

smaller than that at x - a, while the mealaS of the response at two

designs are close.

Although the concepts behind the two major types of robust

design are different, robust design is always concerned with

aligning the peak of the bell shaped response distribution with the

taxgeted quality, (bring the mean to the taxget) and making the

bell shaped curve thinner (reduce the wxialace). This makes it

possible to develop a general procedure for robust design in

which these objectives are modeled as separate goals in a

compromise DSP.

Developinq a General Robust Desiqn Procedure

As mentioned in Section I, to overcome the limitations of

Taguchi's loss model approach, we use the Response Surface

Method, RSM, staxting with the response-model approach

(Welch, et al., 1990: Shoemaker, et al., 1991). The major ele-

ments of the response-model approach axe:

• Combining control alad noise factors in a single array

instead of using Taguchi's inner- and outer-axray ap-

proach,

• modeling the response itself rather thala expected loss,

• approximating a prediction model for loss based on the

fitted-response model.

The RSM, is used to support the design of experiments alad

fitting a response model. Instead of using Tagnchi's orthogonal

array as the combined array for experiments, other fractional

factorial designs or central composite designs cam be chosen. In

general, the response-model postulates a single, formal model of

the type

= f(x, z), (1.1)
/x

where y is the estimated response scalar alad x and z are the

settings of the control alad noise variables. The surface model is

usually modeled with a second order equation, from this, it is

possible to estimate response meala and variability. For Type I

applications in which the deviations of noise factors are the

sources of variation:

Mean of the response _y - f(x, Pz) (1.2)

k 2

Variance of the response (2 e(Lf'_ 2 (1.3)= (Yzi

Y i=l

where g is the mean value, k is the number of noise factors in the

response model alad (_zi is the standard deviation of each noise

factor. In Eqn. (1.3), it is assumed that the noise variables are

independent. In Type II robust design, i.e., when the deviations of

control factors are the source of wxiation, Eqns. (1.2) and (1.3)

are modified:

Mean of the re sponse _ty = fix) (1.4)

1 2

Variance of the response (_ _(_xf'_ 2 (1.5)= (YXi •
J

i=l

Using the response-model approach, robust design for either

type of application can be achieved by bringing the meala given in

Eqn (1.2) or (1.4) to the target alad minimizing the varialace, Eqn.

(1.3) or (1.5). Because the classical RSM is restricted to

unconstrained searching for a local optimum of a single response

(or the wxiance of that response) a compromise Decision Support

Problem, is introduced to handle multiple quality aspects alad

engineering constraints.

A typical structure for a compromise DSP is presented in

Figure 1 and described in detail elsewhere (e.g., Mistree, et al.,

1993a). The compromise DSP assists the designer in modeling

and handling multiple trade-offs simultaneously. In the compro-

mise DSP, each goal, Ai, has two associated deviation variables

d i- alad di + which indicate the extent of the deviation from the

taxget Gi. To effect a solution, on the basis of preference, goals

may be rank-ordered into priority levels using the lexicographic

minimum. (Ignizio 1985).



InFigure1,theintegrationofthecompromiseDSPaladRSM
areillustrated.WhenformulatingthecompromiseDSP,different
parametersaxeclassifiedassystemvariables,systemparameters
(constantvariables)orsystemperformances(constraints/goals).
All thedecisionsin classifyingparametersaxeusedto help
buildingresponsesurfacemodels.Usingthequalityengineering
terminology,responsesurfacemodelsaredevelopedfor
responses(systemperformances)asfunctionsofcontrolfactors
(systemvariables)andnoisefactors(systemparameterswith
deviation)overtheregionofinterest(definedbytheboundsof
designvariables).Basedonaresponsesurfacemodel,themean
andvarianceofaresponsecanbederivedasfunctionsofcontrol
factorsaccordingtothesourcesofvariation(eitherthevariation
ofnoisefactorsorcontrolfactorsthemselves).Theexplicitforms
oftheseequationsarepassedtothecompromiseDSPwherethey
areeitherusedasconstraintsorgoals.Insteadofusingasingle
criterionandminimizingthesignal-to-noiseratio,animportant
aspectofthisworkistopermitadesignertoindependentlybring
themeanontargetandminimizethevariationaroundthistarget.
Thisisaccomplishedbymodelingtheseobjectivesseparately.

Webelievethisisacomprehensiverobustdesignprocedure.
Ifasurfacemodelisestablishedoverthespaceformedbyallthe
parametersinvolved,thesameresponsesurfacemodelcanbe
usedforeithertypeofcompromiseDSP.It isnotdifficultto
imaginethatthesetwoformulationscanbecombinedtoachievea
robustdesignwherethereaxedeviationsofbothcontrolandnoise
factors.

Weuseaworstcasescenarioinsteadof expected values of

system performance for constraints to study variations of

constraints caused by the deviations of controllable or uncon-

trollable parameters. Using the expected values of system

performance for constraints might permit the constraints to be

violated, especially when the constraints axe close to being active

at the solution point. Using the worst case for the constraints,

instead of using E[gj(x,z)]_<0,

E [gj(x, z)]+i= _ < 0, or E [gj(x)]+i = _ Zxi < 0 (2.1)

where Azi is the deviation of a noise parameter and Axi, the

deviation of a sensitive design variable (control factor); k alad 1

are the numbers of noise parameters alad sensitive design

variables, respectively. Next, we use the design of a solar-

powered irrigation system to demonstrate our approach.

IIIA SOLAR POWERED IRRIGATION SYSTEM DESIGN

EXAMPLE

Previously, we have used the solar powered irrigation system

design as an example to show the application of Taguchi

techniques to concurrent subsystem embodiment and system

synthesis (Chen, et al., 1994). We used the inner- and outer-

arrays for experiments and the "signal-to-noise ratio" as our

measurement and found that there axe many limitations of the

Taguchi's approach, Section 1. It was difficult to use this method

when making tradeoffs among multiple quality characteristics and

incorporating constraints and factor interactions. In this paper,

using the stone problem, we show how our newly proposed

method can be used to overcome these difficulties and extend the

robust design applications. The layout of the solax-powered

irrigation system is shown in Figure 3. It is assumed that

parabolic trough N-S tracking is used for solar collection and

water is the working fluid. The aim in the preliminary system

design is then to determine:

• maximum operating press., Ra_kine Cycle, X A (MPA)

• maximum operating temp., Rankine Cycle, X B (OK)

• maximum temp. drop in the solar collectors, Xc (°K)

• working fluid flow rate, X D (kg/s)

The design must meet the specifications:

• pumped load (power output) must be as close as possible
to 20 kW

• overall efficiency must be maximized as close as possible

to 20%

• economic benefits must be maMmimzed as near as

possible to $150,000.

Solar energy
collection cycle

Y

Heat transfer
fluid pump

Heat engine cycle

Mechanical work

PumP

m

Cooling water
from ttie well

Working fluid pump

FIGURE 3. SYSTEM CONFIGURATION

The design also must satisfy thermal system requirements, i.e.,

the maximum temperature in the cycle has to be smaller than the

stagnation temperature at all times (The stagnation temperature

cannot be less than the maximum temperature corresponding to

the maximum pressure). In this work, we combine

thermodynmnic property prediction software (Shamsundax, 1989)

with an economic analysis routine (BascaxaJa, 1990) for our

computer simulation module. Simulation inputs include

definitions for components, system parameters involved in system

synthesis and the operating environment. System performances,

e.g., cycle efficiency, power output, total efficiency and economic

benefits are generated. An important aspect of thermal system

design is to reduce the variance in system performance caused by

the deviation of an uncontrollable operating environment (noise

factors). In our case, the noise factors axe mnbient temperature

and level of insolation. Type I robust design can be applied.

Another important application of robust design is to reduce the

variance of performance caused by deviations in control factors

considering that there may be adjustments to these factors in the

later stages of design. In other words, it is necessary to find a flat

region of design space rather than the optimum. We demonstrate

how these two types of robust design can be formulated and

solved.



Thefirststepistoclassifythepaxanaetersascontrolfactors,
noisefactors,held-constantfactorsor responses. The ranges of

these parameters and their relationship to the whole solar

powered irrigation system are shown in Figure 4. There axe four

controllable design parameters, representing decisions on thermal

cycle design. Two noise factors (uncontrollable paxanaeters) axe

associated with the unstable operating environment. The held-

constant factors are the constant parameters and the four

responses are system performances which can either be

considered as goals or constraints. After classifying parameters, it

is necessary to fit a surface model for each of the four responses

over the space formed by control factors, XA, XB, XC, and XD,

and noise factors, Z a and Z B.

We use the fitted response surface model and a derived

function of variance of the response as input to the compromise

DSP instead of using an expensive computer simulation at each

solution iteration. Using this approach, there is always a tradeoff

between the number of experiments used and the accuracy of the

estimated model. Studies show that the response-model approach

relies on the adequacy of simple models over a small paxanaeter

range. A common strategy is to use sequential experimentation,

i.e., perform low order screening experiments first over the whole

design space to identify appropriate regions of interest, and then

build a higher order response model over reduced regions,

probably also using a reduced number of factors. Here we assume

the reduced paxmneter ranges are X A [2.0-3.0] MPA, X B [450-

520] °K, X c [550-650] °K, and X D [0.01-0.05] kg/s. The ranges

for the noise factors Za and Z b are as before.

X B [450-520] K

Max. collector temperature

X C [520-800] K

Working fluid flowrate

X D [0.01-0.2] kg/s

Noise Factors

Ambient temperature Z a [293-303] K

Level of insolation Z b [800-1000] W/m 2

Control Factors
1 I Response

Maximum pressure Solar Powered _ Power output
X A [0.3-3.0] MPA "-I IrritJatian I Overall efficiency

.... o ...... y 1 in
Maximum temperature I System ear y sav gs

Stagnation

"_ temperature

Held-Constant Factors

Solar collector concept

Working fluid concept

Turbine efficiency

Pump efficiency

Time periods considered

FIGURE 4. CLASSIFICATION OF PARAMETERS

From low-order screening experiments, we also notice that

noise factor Z b and its associated interactions have no effect on

the power and economic benefits while control factor X o and

associated interactions do not influence the behavior of efficiency

and stagnation temperature. Thus Central Composite Design

(CCD) with 43 experiments for 5 factors can be used to construct

quadratic response surfaces for each response (Montgomery,

1991). The CCD is composed of a 25 (32) factorial design, 10

"star" points and 1 center point. The suggested value for cq a

parameter varied to meet conditions of equal precision of

estimation in all directions, is 2.378. Based on the results of the

experiment, the least squares method from regression analysis is

used to fit a quadratic surface model:

f(Xl,'"Xn) = 1_0 + _lXl + ""+_nXn + 71Xl 2 + ""+TnX£

+ _12X1x2 + ... + _n,n_lXn_lXn

A summary of the response surface models for the four system

performances is presented in Table 1. Variables XA, X B , X C ,

XD, Z a and Z b used in the equations axe all normalized from -1 to

1. One benefit of using normalized variables is that the total

response variance can be calculated easily when there are several

sources of variance. Based on the coefficients of the response

model, a designer can see clearly the significance (contributions)

of different terms (linear, quadratic and interaction terms). The
functions in Table 1 axe the reduced models with some trivial

effects ignored, e.g., those items with very small coefficients. If,
after normalization, the contribution of an item is less than 1%, it

is considered trivial. The sequence of items is arranged in

descending order of significance.

The normalized quadratic surface model can also help to

identify potential control factors for reducing the noise effects by

examining the control-noise interactions. For exmnple, to reduce

the variance of power caused by the noise factors Za, the

potential adjustment factors are XA, X B and XD. Further, using

XD is most effective because the coefficient of XDZ a is greater.

Based on the response models, we can formulate compromise

DSPs for Type I and Type II robust design applications.

TABLE 1. RESPONSE MODELS FOR PERFORMANCE

Response Model

Power - 24.947 + 16.011XD+ 1.306X B + 0.820XBXD-0.785Z a -

(objective) 0.497XDZ a + 0.228XAXB+ 0.212X A _ 0.153XB 2 + 0.130XAX D _

kW 0.110XA 2 - 0.034XBZ a + 0.002XAZ a (3.1)

Efficiency - 0.18507 + 0.01041X A + 0.00380Z b- 0.00366Z a - 0.00350X C -

(objective) 0.00157XB (3.2)

Savings - 174695.73 + 112114.69XD+ 9133.80X B + 5733.05XBX D-

(objective) 5487.76Za - 3478.84XDZa + 1586.48XAXB+ 1486.84XA -

$ 1067.42XB 2 + 916.26XAX D - 768.90XA 2 - 242.88XBZ a +

152.40XAZ a (3.3)

Tstag K - 1873 - 5Za-175 z b (3.4)

(constraint)

Compromise DSP Type I Reducing the variance of system

performance caused by the deviation of uncontrollable operating

environment is associated with the Type I robust design

application, Table 2. Using the compromise DSP, the problem

becomes how to choose X A, X B, X c and X o to reduce the

influence from Za and Z b while keeping the performance as close

as possible to the targets.

To handle multiple objectives simultaneously, each objective

is modeled as a goal. Tradeoffs axe implemented by minimizing

the total deviation function. As we choose to address separately

the issues of bringing the mean to target and minimizing the

deviation, for three system performance targets, there will be six

goals, fl- f6 in the deviation function represent different priority

levels, assigned to the six goals. Initially, all goals are at the same

priority level and assigned equal weights. The deviation function



becomes:
Z = 0.167(d1-+ dl +) + 0.167(d2-+ d2 +) + 0.167(d3- ) +

0.167(d4-+ d4 +) + 0.167(d5- ) + 0.167(d6-+ d6 +) (3.12)

Further information about the formulation and solution of

compromise DSPs is available in Mistree, et al, 1993b.

TABLE 2. THE COMPROMISE DSP TYPE I

_iven

Response model of Power, Overall Efficiency, Savings and Stagnation

Temperature as functions OfXA, XB, XC, XD, Z a and Zb.

The mean and variance of noise factors, PZa - 0, PZb - 0, _Za - 1/3, _Za

- 1/3 (all normalized).

Target for Power and its variance, Tpowmea n - 20 kW (the nominal the

better), Tpowvar - 0.

Target for Efficiency and its variance, TEffmea n - 20% (the bigger the

better), TEffva r - 0.

Target for Savings and its variance, TSavmea n - $150000 (the bigger the

better), TSavvar - 2.60 E6($2) (equivalent to $1612 standard deviation)

_ind

The values of control factors

XA, Normalized cycle maximum pressure

XB, Normalized cycle maximum temperature

XC, Normalized collector maximum temperature -

XD, Normalized working fluid flow rate

The values of deviation variables di- , di + (i -1, 6) -

]ubject to
The constraint:

The stagnation temperature cannot be less than the maximum temperature in

cycle

E[Tstag(X A, X B, X C, XD,Z a, Z b) ] -I_Tstag/_Zal*3_Za -

I_Tstag/_Zbl*3_Zb > XB*520 (3.5)

where E represents the statistical expected value of a function

The goals:

Achieve the mean of power as close as possible to the target

P°w(XA, XB, XC, XD, PZa, PZb)/Tpowmean - dl + + dl- - 1, (3.6)

Minimize the variance of power

(OPow/OZa)2+ (OPow/OZb) 2 - d2 + + d2- -0, (3.7)

Maximize mean of overall efficiency to the target

Eff(XA, XB, XC, XD, PZa, PZb)/TEffmean - d3 + + d3- - 1, (3.8)

Minimize the variance of overall efficiency

(oeff/OZa)2+ (oeff/OZb) 2 - d4 + + d4- -0, (3.9)

Maximize mean of savings to the target

Sav(XA, XB, XC, XD, PZa, PZb)/TSavmean - d5 + + d5- - 1, (3.10)

Minimize the variance of savings

[(OSav/OZa)2+ (OSav/OZb)2]/TSavvar - d6 + + d 6- -0, (3.11)

Bounds on the design variables:

-1 <XA< 1 -1 <XB< 1

-I<Xc<I -1 <XD<I

di +' di- - 0, with di +, d i- > 0

3bjective

Minimize the total deviation function

z - [ fl(dl-÷ dl÷), f2(d2-÷ d2÷), f3(d3-), f4(d4-÷ d4÷),f5(d5-), f6(d6-÷ d6÷)]

(3.12)

Eqns. (3.5-3.11) can be expanded using the response surface

models in Table 1, e.g., using Eqn. (3.1), Eqn. (3.6) becomes:

(24.947+ 16.011 *XD+ 1.306*XB+ 0.820*XB*XD+

0.228*XA*X B + 0.212"X A - 0.153*XB 2 + 0.130*XA*X D -

0.110*XA) / Wpowmean - dl + + d 1- - 1 (3.14)

Similarly Eqn. (3.7) can be expanded:

(-0.785-0.497"X D- 0.034*XB+0.002*XA) 2- d2++d2--0 (3.15)

In the compromise DSP, to calculate the performance
k 2 k 2

variance, instead of using (_7_) 2only%, _(_) is
i=l i=l

required. When there axe several noise factors, zi, after

normalization, _zi has the stone value if the standard deviation is

proportional to the range of design variables. This is equal to 1/3

assuming that the deviation follows a normal distribution. With

respect to the goal of minimizing variance, it is desirable that the

target approach zero. However, it is not always advisable to use

zero as a target because tremendous resources axe often required

to reduce variance to zero. In this work, we first calculate a

reasonable minimum value for the variance of a response without

considering any other goals and use this value as the target for the

variance goal. For Power and Efficiency zero becomes the target.

The target for variance of economic benefits is 2.60E+6 ($2).

The compromise DSP in Table 2 is solved using the DSIDES

software (Mistree, et al., 1993a) and the results are:

X A - 3.0MPA, X B - 450K, X c - 550K and X D- 0.0258(kg/s) At

this solution point, the values of mean and variance of each

performance with the total deviation function value, Z, equal to

0.02577:

Powmean- 20.0027 (kW) Powva r - 0.0068 (kW 2)

Eflmean- 19.45% Eflva r - 4.93E-06

Savmean- 141143 ($) Savva r - 3.3E+06 ($2)

To confirm the results, we compare values from the response

model with those from a complete simulation, Table 3.

TABLE 3. CONFIRMATION OF RESULTS

Mean Power (kW)

Mean Efficiency

Mean Savings ($)

Values_omthe second- Values _omorigina]

orderresponsemodel simulaion

20.003 19.680

19.45% 19.45%

141143 137795

Error

1.6%

0

2.4%

TABLE 4. GOAL PRIORITIES FOR MEAN AND

VARIANCE

Scenario I Scenario 11

Preemptive formulation ofdeviatioi _vel 1-all goals Level 1-Mean

function equal weights Level 2-

Variance

Scenario 111

Level 1-

Variance

Level 2-Mean



_ystern variables
XA (MPA)

x B (K)

x c (K)

XD (kg/s)

Mean on Target

Power (Target 20 kW)

Efficiency Target 20%)

Savings (Target $150,000)

'Reducing Variance"

Power (Target 0)

Eft. (Target 0)

Savings (Target 2.6E+06)
9ev. Function Value, Z

level 1

level 2

3.0

45O

550

0.0258

20.0027

19.45%

141143

0.0068

4.93E-06

3.3E+06

0.02577

3.0

45O

550

0.0258

20.0027

19.45%

141143

0.0068

4.93E-06

3.3E+06

0.0286434

0.0222924

3.0

45O

550

0.01

8.04411

19.45%

57397.9

9.405E-03

4.927E-06

460465

0.0031053

0.410113

In addition to the comparison at solution points, we also use

other raladom points to check the accuracy of our predictor. This

shows that the accuracy of our response model is satisfactory

within the range of study. This increases our confidence in using

the response model as a fast analysis module for further study.

When considering multiple aspects of quality, designers may

have different preferences for whether it is more important to

bring the mean on target or reduce variation. In the compromise

DSP, difl'erent design scenarios can be modeled by assigning

goals different priority levels. In Table 4, the results of three

different preemptive formulations of deviation function are given.

It is interesting that the result for Scenario II are the stone as

those for Scenario I, Table 4. The means obtained are very close

to their targets in Scenario I, so there is not much room for

improvement in Scenario II. In Scenario III, variation has been

reduced significantly, however, this is achieved by sacrificing the

goals of bringing the meala on target. Studies on different goal

priority levels for meala and variance can help designers obtain a

clearer idea of what is possible glad understalad the major obsta-

cles to achieving a robust design.

Compromise DSP Formulation II Given that XA, XB, X C

and X D are system-level design variables, adjustments axe

possible after the design at the component level is finalized. Type

II robust design reduces the varialace of performance due to

deviations of control factors. Suppose that within the design

parameter ralage, e.g., X A [2.0-3.0MPA], X B [450-520°K], X C

[550-650°K], glad X D [0.01-0.05kg/s], the possible deviation for

each variable is constalat, after normalization, say

AXA-AXB-AXc-AXD-0.2, then the compromise DSP for

robust design in this new situation is given in Table 5. We

assume that noise factors Z a glad Z b become constants at their

means Z a - 298K and Z b- 900W/m 2.

The target for each variance goal is the best possible value

obtained without considering the other goals. We use three

difl'erent deviation functions to test solutions for difl'erent

scenarios, Table 6. In Scenario I, all the goals are at the same

priority level with equal weights; while in Scenario II, six goals

are on the same priority level with higher weights for reducing

the variance. In Scenario III all six goals have the same priority

but higher weights axe assigned to bring the mean on target.

Based on the results from Table 6, we observe:

• The results for XB, X o glad XD are stable under different

scenarios. However, X A jumps between its lower glad

upper bounds. Thus a higher cycle pressure is preferred

for bringing the mean on target, glad a lower cycle pres-

sure is preferred for reducing varialace.

• For Power, the goal of bringing the mean on target cam

always be achieved exactly, while for Efficiency, the mean

on target goal must be sacrificed if reducing the variance

is assigned a higher weight. For Saving, it is always

difficult to bring the meala on target.

• The goals associated with reducing varialace cam be better

achieved when they axe given a higher weight. The

variance in efficiency is always a small constant because it

is not a function of design variables.

These observations match the mathematical structure of the

response model, e.g., for the second observation, the equation of

efficiency indicates that the larger XA, the easier it is to bring it

on target. However, this contradicts the notion of reducing

variance of the other responses. If variance reduction is assigned

a higher weight, am appropriate trade-off results.

TABLE 5. THE COMPROMISE DSP TYPE II

3ivml

Find

_ubject to

Response model of Power, Overall Efficiency, Savings and Stagnation Temperature as functions

OfXA, X B , XC, XD, Z a and Zb.

Z a =Zb= 0

AXA=AXB=AXc=AXD = 0.2

Target for Power and its variance,

Tpowmea n = 20 kW (the nominal the better),

Tpowvar = (3) 2 kW 2.

Target for Efficiency and its variance,

TEffmean = 20% (the bigger the better), TEffvar =0.

Target for Savings and its variance,

Tsavmea n = $150000 (the bigger the better),

Tsawa r = (21107) 2 $2

The values of control factors

XA, Normalized cycle maximum pressure, XB, Normalized cycle maximum temperature, XC,

Normalized collector maximum temperature XD, Normalized working fluid flow rate

- +
The values of deviation variables d i , d i (i = 1, 6)

The constraints:

The stagnation temperature cannot be less than the maximum temperature in cycle

E[Tstag(XA,XB,Xc,XD,Za,Zb)I-15Tstag/gxAI AXA-15Tstag/gxBI AX B -I_stag/gxcI A,x c-

I_stag/gXDl*AXD > (XB+ 1* AXB)*500 (3.16)

where E represents the statistical expected value of a function

The goals:

Achieve the mean of power as close as possible to the target

PoWlXA, XB, XC, XD, Za, Zb)ffPowrnean- d 1+ -- d 1- = 1, (3.17)

Minimize the variance of power

2, 2 2, 2 2, 2
[(gPow/gXA) AX A +(gPow/gXB) AX B +(gPow/gXC) AX C

_ 2, 2
+(oPow/oXD) AX D I/Tpowvar - d2 + -- d 2- =0, (3.1 g)

Maximize mean of overall efficiency to the target

+÷ -
EfflXA, XB, XC, XD,Za, Zb)ffEfi-mean- d 3 d3 = 1, (3.19)

Minimize the variance of overall efficiency

2, 2 2, 2 2, 2
(gEfl'/gXA) AX A +(gEfl'/gXB) AX B +(gEfl'/gXC) AX C

+(gEflTgXD)2*AXD 2 - d4 + + d 4- =0, (3.20)

Maximize mean of savings to the target

++ -SaV(XA, XB, XC, XD, Za, Zb)/TSavmea n- d 5 d5 = 1, (3.21)



Minimize the variance of savings

[(gSav/gXA) 2*MXA2+(gSav/gXB) 2*MXB2+(gSav/gXC )2 *AXc 2

++ -+(gSav/gXD)2*AXD 2 IFfSawa r- d6 d6 =0, (3.22)

Bounds on the design variables

-1 <XA< 1; -1 <X B < 1;-1 <X C < 1;-1 <X D < 1

+ - + ->odi " di = 0, with di , di

3bjective

Minimize the total deviation function
- + _ + _ _ + _ _ +

= [ fl(dl + d I ), f2(d2 + d2 ), f3(d3 ), f4(d4 + d4 ),f5(d5 ), f6(d6 + d6 )1

(3.23)

17 CLOSURE

A comprehensive wad rigorous procedure is introduced to

overcome some of the limitations of existing experiment-based

and nonlinear programming approaches to robust design. We

incorporate useful ideas from the existing approaches and to

handle two different types of robust design. The integration of

Response Surface Methodology with the compromise DSP

appears to have several advantages:

• Engineering constraints cam be introduced and there is

great flexibility for studying tradeoffs among multiple

design objectives.
• The interaction effects and nonlinear effects can be

considered using the response surface model, e.g.,

quadratic surfaces. Compared to Taguchi's linear model

approach, this approach yields more accurate results.

• Response surface models can serve as fast analysis

modules for different types of robust design application.

By introducing a parameter as a variable in the response

surface model, we extend our scope of study.

• The compromise DSP addresses individually the issues of

bringing the mean on target and reducing variation. This

provides designers more flexibility to make decisions

based on different robust design criteria.

Robust design procedures can be applied to various kinds of

engineering problems. We demonstrate the application of this

method to the design of a thermal system. In the future, we will

apply quality concepts to improving efficiency and effectiveness

in designing more complex systems. Potential applications

include decomposition of complex system design into

subproblems using Type I robust design, and the generation of

flexible design specifications for increasing design freedom using

the Type II robust design. We are in the process of developing a

Robust Concept Exploration Model, RCEM, which is used to

support the rapid evaluation of different design alternatives to

generate competitive top-level design specifications. Improving

the response surface model by narrowing the design space to the

region of greatest interest is an importaJat part of this procedure.

TABLE 6. RESULTS FOR TYPE II

L 1 Scena_ol 1 Scenario11 1 Scenario111 J

System variables

X A (MPA)

x B (K)

x c (K)
X D (kg/s)

Mean

Power

Efficiency

Savings

Variance

Power

Efficiency

Savings

Deviation Function

Value Z

2.974

450

550

0.0256

20.0

20%

140085

9.492

4.92E-06

4.654E+08

0.0276

2.000

450

550

0.0255

20.0

17.97%

140062

9.132

4.92E-06

4.477E+08

0.0213

2.973

450

550

0.0256

20.0

20%

140085

9.492

4.92E-06

4.654E+08

0.0253

Preemptive formulations of the deviation function in Table 6:

Scenario I: Z-0.167(dl-+ dl +) + 0.167 (d2-+ d2 +) + 0.167(d3-)

+ 0.167(d4-+ d4+)+ 0.167 (d5-) + 0.167 (d6-+ d6 +)

Scenario II: Z-0.1(dl-+ dl +) +0.233(d2-+ d2 +) +0.1(d3- )

+0.233(d4-+ d4 +) + 0.1(d5-) + 0.233(d6-+ d6 +)

Scenario III: Z-0.233(dl-+ dl +) +0.1(d2-+ d2 +) + 0.233 (d3-)

+0.1(d4-+ d4+)+ 0.233 (d5-) + 0.1(d6-+ d6 +)
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